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Abstract 
This technical note presents preliminary results (or a pilot study) of neural network models applied to 

produce non-linear ensemble averaging and bias correction of the Global Wave Ensemble System 

(GWES) of the US National Weather Service (NWS). Our work seeks to improve the skill of GWES 

products, including significant wave height (Hs), peak wave period (Tp), and 10-m wind speed from the 

Global Ensemble Forecast System (GEFS). We present an initial strategy, whereby one location in the 

Atlantic Ocean and one in the Pacific Ocean, both with reliable and quality controlled buoy data, are used 

to train and test our statistical models at single points. The GWES was evaluated against National Data 

Buoy Center (NDBC) measurements at these two points; this comparison indicated an increase of forecast 

errors and spread with time, as well as an increase of error as a function of percentile levels – indicating 

the value below which a given percentage of observations in a group of observations fall. Among several 

tested architectures, the best identified neural network model used two layers, each with 11 neurons at the 

intermediate layer, a hyperbolic tangent basis function, optimization using sequential training, and 

normalization applying the log function to time series of Hs. Many different random initializations, with 

different seeds, were found to have a significant impact on the results. An approach based on an ensemble 

of neural networks was successfully applied, providing an improvement on the 5-day forecast of 64% in 

the bias, 29% in the RMSE and scatter index, and 11% in the correlation coefficient. A final neural 

network model was trained to predict the difference of observations minus the ensemble mean, i.e., the 

¨error¨ (called residue) of current ensemble average. This approach ensures that no range of values (from 

calm to extreme events) is deteriorated by the statistical model, and as a consequence expanded the 

improvement of the neural network post processing to higher percentiles, associated with waves above 2.5 

meters. 
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1. Introduction 

The Global Wave Ensemble System (GWES) was implemented in 2005 (Chen, 2006) 

and initially validated by Cao et al. (2007). It is run operationally at the US National Centers for 

Environmental Prediction (NCEP) within four daily cycles, with a forecast range of 10 days. The 

GWES is composed of 20 ensemble members, plus a control member (deterministic). The 

members are forced by Global Ensemble Forecast System (GEFS) winds on WAVEWATCH III 

model (Tolman, 2016). The GWES runs on a global domain with 0.5o spatial resolution, with 

one-hour internal time step, generating point outputs every hour, and gridded fields every three 

hours. A more complete description of the system and additional validation is provided in Alves 

et al. (2013). The current operational configuration of the GWES, which provides data used in 

the present study, includes parameterizations for wind input and wave dissipation using the 

source terms developed by Ardhuin et al. (2010); nonlinear wave–wave interactions are 

calculated using the discrete interactions approximations (DIA) of Hasselmann and Hasselmann 

(1985); and propagation is computed using a third-order accurate scheme (Leonard 1991).  

A previous implementation of the GWES, using different wind input and wave 

dissipation source terms following Tolman and Chalikov (1996), and a global grid with spatial 

resolution at 1o, was validated by Alves et al. (2013). Model data was compared to a 2-yr-long 

database (04/2010 to 03/2012) of along-track altimeter measurements of significant wave height 

(Hs) made by Jason-1, Jason-2, and Envisat. Their results showed that although the general bias 

of the ensemble system does not show significant improvement over the deterministic global 

wave, after the fifth forecast day, root mean square errors from the GWES become smaller than 

the deterministic run. Furthermore, the GWES continuous ranked probability scores (CRPS) 

systematically outperforms the corresponding deterministic model’s mean absolute error (MAE) 

at all forecast times. 

Despite those advances, the GWES still suffers from shortcomings that limit its skill. 

These shortcomings are evaluated in the present manuscript considering the period from 02/2015 

to 02/2017. The typical arithmetic mean is currently used to calculate the ensemble mean (EM) 

in the GWES. The arithmetic EM for a variable p is currently calculated as, 
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where n is the number of ensemble members and pi is the i-th ensemble member. Using the 

arithmetic EM as a ‘best representative’ of the ensemble assumes that a linear relationship 

between the EM and ensemble members is optimal. However, in our application this relationship 

may be strongly nonlinear. An optimized neural network (NN) model can be developed to 

calculate nonlinear ensemble averages as well as to reduce the GWES error by training the 

statistical model using reliable measurements. The post-processing methodology proposed here 

applies the nonlinear statistical model: 

 

𝑁𝑁𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑁𝑁(𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛) (2) 

 

Further tests also considered the combination of both methodologies, using the NN model to 

simulate the nonlinear part of the signal together with the model error, appended to the arithmetic 

EM; i.e., the differences from the current ensemble average (equation 1) from the measurements. 

In this case, the target variable to simulate is the error signal, or ‘residue’, of the arithmetic EM 

compared to observations, as presented by equation (3) and illustrated in Figure 1. 

 

𝑁𝑁𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑁𝑁𝑟𝑟(𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛) (3) 

 

 
Figure 1 – Scheme of MLP-NN predicting the residue, attached to the GWES model, as represented by equation (3).  
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The NN models have been constructed based on the theory of Haykin (1999), Krasnopolsky 

(2013) and Krasnopolsky and Lin (2012). Additional references used are Deo et al. (2001), Deo 

and Naidu (1999), and Mandal and Prabaharan (2006), who developed network systems to 

predict Hs in India, and Tsai et al. (2002) in Taiwan. Campos and Guedes Soares (2016) applied 

the same equation (3), predicting the residue, to simulate Hs in Brazil. 

A multilayer perceptron model (MLP-NN) with hyperbolic tangent as the activation 

function is considered (Krasnopolsky, 2013): 

 

𝑁𝑁𝑁𝑁(𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛;𝑎𝑎, 𝑏𝑏) = 𝑦𝑦𝑞𝑞 = 𝑎𝑎𝑞𝑞0 + �𝑎𝑎𝑞𝑞𝑞𝑞

𝑘𝑘

𝑞𝑞=1

. 𝑡𝑡𝑎𝑎𝑛𝑛ℎ �𝑏𝑏𝑞𝑞0 +�𝑏𝑏𝑞𝑞𝑖𝑖.𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� ; 𝑞𝑞 = 1,2, … ,𝑚𝑚 (4) 

 

Here, 𝑝𝑝𝑖𝑖 is the input, 𝑦𝑦𝑞𝑞 is the output, 𝑎𝑎 and  𝑏𝑏 are the NN weights, 𝑛𝑛 and 𝑚𝑚 are the numbers of 

inputs and outputs respectively, and 𝑘𝑘 is the number of nonlinear activation functions 

(hyperbolic tangents, or ¨neurons¨). The first summation (sigma) in the right hand side (RHS) of 

equation (4) represents a linear expansion (a linear combination of hyperbolic tangents), while 

the second summation (sigma) is the weighted sum of input variables. The combination of both 

composes a very flexible set of non-orthogonal basis functions that have great potential to adjust 

to the functional complexity of the mapping to be approximated (Krasnopolsky, 2013). The 

target variables are significant wave height (Hs), peak wave period (Tp), and 10-meter wind 

speed (U10); they will be evaluated against buoy measurements during the training process. Hs 

and Tp are diagnostic variables in GWES, but constitute the main operational guidance products 

used by forecasters. Thus, the primary goal of this project is better estimation of these quantities. 

The U10 is provided by the GEFS. Although U10 is a product generated from a separate 

ensemble system, the introduction of this variable improves the prediction of Hs, due to the high 

correlation of Hs with U10. The input variables consist of the 21 ensemble members (20 plus the 

control member), associated with these three variables, as well as the sine and cosine of time 

(Julian days) to properly include information about the seasonality of the signal. Thus, a total of 

21*3+2=65 variables compose the inputs for the NN model. A single forecast time is initially 

fixed during the first tests, equal to the fifth day, which is approximately the lead time at which 

ensemble forecasts start to have a better performance than deterministic forecasts (Alves et al., 

2013). A range of forecast days from 0-21 days is planned to be considered in future analyses.  
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2. Input Data and Assessment 

The observations used for the present analysis consist of global quality-controlled buoy 

and altimeter measurements. The Centre ERS d'Archivage et de Traitement (CERSAT) of the 

French Research Institute for Exploitation of the Sea (IFREMER) is a center that continuously 

organizes, evaluates, quality controls, and calibrates all publicly available altimeter data, 

providing standardized netcdf output files. Queffeulou and Croizé-Fillon (2017) describe the data 

and the methodology applied in the CERSAT/IFREMER satellite wave data processing and 

quality control. Because the Operational GWES historical data is available from March/2015 to 

present, we downloaded altimeter data from the CERSAT/IFREMER ftp corresponding to the 

period from March/2015 until February/2017. However, these data are not available for 

operational use since there is a delay due to quality control and calibration. The matching period 

of GWES and altimeter data includes three altimeter missions: JASON2, CRYOSAT and 

SARAL. Comparisons with buoy data (Queffeulou 2003, 2004) show that the altimeter estimate 

of Hs is, in general, in agreement with in situ data, showing standard deviations of differences of 

the order of 0.30 meters. The along-track altimeter data was organized and collocated onto a 

regular grid (same grid and resolution of GWES) using a kd-tree, following Sepulveda et al. 

(2015). A maximum distance of 50 km and time lag of 30 minutes to the nearest GWES model 

grid point is defined, and all altimeter data within this space-time range was averaged. The 

global concentration of altimeter data during the two year period used for the experiments, from 

03/2015 to 02/2017, is presented in Figure 2. 

 

 
Figure 2 – Quantity of altimeter measurements at each grid point for wind speed (left) and Hs (right). Color bars 

indicate the total amount of satellite measurements averaged and allocated to the GWES regular grid within the 2-yr 

period considered. 
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Buoy measurements were obtained from two sources, the National Data Buoy Center 

(NDBC, in blued at Figure 3) and the CERSAT/IFREMER database previously described (in red 

at Figure 3), which has been working in partnership with the Copernicus Marine Environment 

Monitoring Service, MyOcean, and the World Meteorological Organization (WMO). Both are 

systematically quality-controlled data. A total of 154 buoys were selected, shown in Figure 3, 

mostly concentrated in the North America and Europe. The observed quantities obtained from 

the buoys are Hs, Tp, and wind speed (converted to the 10-m level). 

 
 

 
Figure 3 – Buoy positions involving all data obtained from NDBC (in blue) and IFREMER (in red) for the period 

from March/2015 until April/2017. Coastal and shallow water buoys were excluded from the database. Black points 

are the GWES grid points and the white areas represent the mask used to exclude land and coastal points. 

 

Observations close to the coast in shallow waters were excluded because of two 

concerns: (1) Altimeter data present increasing error close to the coast, as explained by 

Sepulveda et al. (2015), Queffeulou and Croizé-Fillon (2017), and Shanas et al. (2014); and (2) 

the probability distributions and wave climate change rapidly due to the effect of bathymetry and 

coastline, which would require a different NN training strategy in these regions. A mask was 

applied with the exact latitude and longitude of the valid grid points used in the numerical wave 

model (WAVEWATCH III), excluding coastal and shallow areas to avoid such difficulties. Two 

sources of global data were used to build the mask: ETOPO1 NOAA´s bathymetry (Amante and 

Eakins, 2009 - National Geophysical Data Center/Geodas Databases NGDA/GEODAS/NOAA) 

with one arc-minute of resolution; and distance from the coast database from NASA's Goddard 
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Space Flight Center, with 0.04 degrees of resolution. Initially, minimum water depths of 10 

meters and minimum distance from the coast of 50 km were imposed as constraints.   

After compiling the global buoy and altimeter data, we began initial tests and 

development of MLP-NN models using a single point analysis. In our first set of tests, we first 

use one year, and later expand to two years of buoy measurements. For the first batch of tests, in 

order to have an independent validation, another nearby buoy was selected to provide data for the 

validation set; i.e., optimal MLP-NN parameters are obtained and tested on the principal buoy 

and then applied and validated using another neighboring buoy. A limitation with this method is 

the distance between buoys (Table 1) that leads to small differences in the wave climate and can 

induce NN prediction errors. Therefore, in the second batch of tests, MLP-NN was trained and 

tested using the first year of measurements and validated using the second year of measurements.  

 
 

Table 1 – Information about the NDBC buoys selected. In bold are the buoys used for training the NN 

corresponding to the blue stars in Figure 4. 

NDBC 

buoy 
Ocean Latitude Longitude Depth (m) 

Data 

Availability 

(%) 

Distance from 

model grid 

point (km) 

Distance 

between 

buoys (km) 

Corr-Coeff of 

Hs between 

buoys 

41004 
Atlantic 

32.501 -79.099 37 99.5 9.3 
164 0.89 

41013 33.436 -77.743 28 99.7 23.6 

46047 
Pacific 

32.398 -119.498 1488 98.7 11.3 
428 0.81 

46028 35.712 -121.858 1048 82.1 26.8 
 

 

Buoys with almost no gaps in data and high quality of measurements were selected 

offshore South and North Carolina / USA. Another pair of buoys was selected in the Pacific 

Ocean, providing an independent set relative to the Atlantic analyses. These two additional 

buoys are moored offshore California / USA, and have data at the same high quality levels as the 

Atlantic buoys. Figure 4 illustrates selected buoy locations, and Table 1 provides details of each 

point/buoy. The blue stars show the position of the main buoys where the MLP-NN is trained 

and tested and the cyan dots are the buoys used for validation. The small black dots are the 

regular grid points of GWES selected after applying the mask previously described. Figure 4 

(right) presents the histogram of Hs for buoys in the Atlantic and Pacific Oceans. 
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Figure 4 – On the left: Pairs of buoys selected for training, test, and validation sets in the NN model. The blue stars 

represent buoys selected for training. In the first batch of tests the validation was performed using buoys represented 

by cyan dots, while in the second batch of tests the validation was performed using the same buoys represented by 

the blue stars, but in a different year. On the right: Histogram of Hs (meters) for the NDBC buoys 41004 (red) in the 

Atlantic Ocean and 46047 (green) in the Pacific Ocean. 

 

An assessment of the GWES error is presented in Figure 5. The right figure panels show 

the increase of error (scatter indexes) as a function of forecast lead time for all ensemble 

members. Results for the buoy in the Pacific Ocean (top-right) produce errors from 10% to 30% 

within the 10-day forecast range. The results for the buoy in the Atlantic Ocean (bottom-right) 

produce errors from 15% to 50%. The left panels show all cycles of 10-day forecasts and their 

evolution in time. For the same event, we visualize how it is simulated in the 10th forecast day 

and its improvement and modification when it approaches the analysis (t0) as time goes by. 

There are specific events that have large biases that are more significant than the increase of bias 

with forecast time. Therefore, the misrepresentation of certain events (storms) may result in more 

impactful errors than the expected deterioration of forecast with time. The control member 

outperformed all GWES ensemble members for all error metrics and variables analyzed (Hs, Tp 

and U10). The better results of the deterministic model compared to the ensemble simulation, for 

the same model resolution and set-up, are unexpected and will be further investigated. 

One metric to evaluate the GWES and future NN simulations is the error as a function of 

percentiles and quantiles (Figure 7). This metric is constructed by re-sampling the data moving a 

minimum percentile level from 0 to 99.9 with several iterations to generate error metrics and 

curves. In other words, each percentile defines a quantile used as the minimum threshold, 

selecting all the values above it. Percentile is the value below which a percentage of data falls, 

from 0 to 99%, while the quantile is the level (in our case, values of Hs, U10 and Tp) associated 
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with each percentile. In Figure 7 the top X-axis presents the percentiles while the bottom X-axis 

shows the quantiles associated to the array of percentiles. When data is re-sampled, the length of 

time-series and thus the statistical confidence is decreased. Therefore, in Figure 7, more data is 

used to calculate the error metrics for the lower percentiles than the higher percentiles. This 

reduction of data with increasing percentile/quantile is shown in Figure 6, and must be 

considered when analyzing the following results in Figure 7. Figure 7 shows the agreement of 

ensemble members in the first percentiles (calm events) that rapidly diverge and spread  above 

the 50th percentile (during more severe events, such as tropical storms, hurricanes and extra-

tropical cyclones). The RMSE systematically increases with the percentiles, for both Hs and 

U10. The goal of the MLP-NN model is to improve the ensemble averaging without 

compromising that accuracy at any percentile level. 
 

 

 
Figure 5 – Evolution of the GWES error with forecast time (up to 10 days); the top sub-figures related to buoy 

41004 (Atlantic) while the bottom sub-figures are related to buoy 46047 (Pacific). The left plots: two years (x-axis) 

of GWES bias containing the whole forecast range (y-axis) and showing the average of the 21 ensembles. Among 

the three lines of subplots, top: U10 (m/s), middle: Hs (meters), bottom: Tp (seconds). The right plots: Scatter Index 

(SI) of Hs; in black the 20 ensemble members, in cyan the control member (deterministic) and in red the 20 

ensemble average. Small values of SI indicate better results. 
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Figure 6 - Amount of data above each percentile and quantile of significant wave height. 

 

The error metrics adopted in this technical note are calculated following the equations: 

𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵 =
∑ (𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1) 

𝑅𝑅𝐸𝐸𝑆𝑆𝐸𝐸 = �∑ (𝑅𝑅𝑖𝑖 − 𝑆𝑆𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (2) 

𝑆𝑆𝑆𝑆 =
𝑅𝑅𝐸𝐸𝑆𝑆𝐸𝐸
𝑆𝑆̅

 (3) 

𝑟𝑟 =
∑ (𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)(𝑅𝑅𝑖𝑖 − 𝑅𝑅�)𝑛𝑛
𝑖𝑖=1

(∑ (𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)2 ∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 )1/2 (4) 

where 𝑆𝑆 are the measurements (buoy data) and 𝑅𝑅 the simulation results (from GWES or from a 

NN). The overbar indicates mean values through time, and 𝑛𝑛 is the number of observations. 
 

 

 
Figure 7 - Error as a function of percentiles and quantiles. Atlantic Buoy 41004 (A,B); Pacific Buoy 46047 (C,D). 

 

A B C D 
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3. Neural Network Testing and Evaluation 

Several MLP-NN models were constructed and compared, testing different architectures 

and pre-processing. As a regression model, the NNs contain the nonlinear basis function (𝑡𝑡𝑎𝑎𝑛𝑛ℎ) 

in the intermediate layer and linear basis function for the output layer; with a structure of two 

layers which is sufficient for the complexity of the problem. A back-propagation training 

algorithm (gradient descent) was applied using the 65 input variables previously explained (e.g., 

ensembles of Hs, Tp and U10 plus the time variables) and 3 variables (e.g., Hs, Tp and U10) 

from the buoys, considered ¨ground truth¨ and targeted by the model. The derivative of the non-

linear neurons used for training is 1 − 𝑡𝑡𝑎𝑎𝑛𝑛ℎ2 and a learning rate of 0.001 was set – which is 

modified inside the NN code using an adaptive rate to better converge to the local minima. 

Sequential training was shown in previous MLP-NN tests to give better results than the Batch 

Training (Hsieh 2009), therefore sequential training was applied. For sequential training, weights 

and biases are sequentially updated for every new index of the time series. Approximately 1,000 

epochs, each considering the entire 2-yr period, were used in the training process. 

 
Figure 8 – Time series of Hs (meters) for the two pairs of buoys. Left: Buoy NDBC 41004 (black) and 41013 (red). 

Right:  Buoy NDBC 46047 (black) and 46028 (red). 

All input and output variables were normalized to the interval between 0 to 1 (𝑥𝑥~𝑖𝑖
[0,1] of 

equation 5) when working with Hs, Tp and U10, and to the interval between -1 to 1 (𝑥𝑥~𝑖𝑖
[−1,1] of 

equation 5) when working with the residue of Hs, Tp and U10 (e.g., the difference from buoy 

measurements to the arithmetic EM). It has been confirmed that applying the log function to Hs 

leads to better results due to the more homogeneous distribution of values. The signal is de-

normalized at the end of the program and metrics are calculated against observations (Figure 8). 
 

𝑥𝑥~𝑖𝑖
[0,1] =

�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�
�𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�

 𝑥𝑥~𝑖𝑖
[−1,1] =

2. �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�
�𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�

− 1 (5) 
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3.1. Nonlinear Means 
Convergence and sensitivity tests were conducted, changing the number of neurons in the 

intermediate layers and excluding/including variables (Hs, Tp, and U10). Data are divided into 

training, test, and validation sets. The weights and biases of MLP-NN models are obtained using 

the training set only. When only one year of data is used, the test set is taken as a sub-sample of 

the total data set (and not used for training), but is still related to the same buoy and time range. 

This means the training and test sets have very similar probabilistic moments and distributions. 

Two thirds of the data are taken for the training set and one third for the test set. The number of 

neurons was changed from 1 to 50 and the bias, root mean square error (RMSE), scatter index 

(SI), correlation coefficient (CC), scatter plots and graphics of error in function of percentiles 

were used to evaluate the results. 
 

Table 2 – Results of Hs (meters) assessment for the MLP-NN in the Atlantic Ocean using buoy 41013 (validation 

set), comparing number of neurons. EM is the arithmetic mean (equation 1) of the ensemble members. NN-

validation is the NN model trained using data from buoy 41004 and run and validated against buoy 41013. The last 

two lines are related to the assessment in the Pacific Ocean, where the MLP-NN was trained using buoy 46047 and 

validated against buoy 46028. 

 neurons Set bias RMSE SI CC 

Atlantic 

 EM GWES (41013) 0.026 0.445 0.334 0.759 

1 NN-validation (41013) 0.158 0.478 0.359 0.722 

11 NN-validation (41013) -0.011 0.420 0.315 0.765 

20 NN-validation (41013) 0.005 0.434 0.326 0.747 

Pacific 
 EM GWES (46028) 0.227 0.550 0.237 0.860 

11 NN-validation (46028) -0.018 0.481 0.207 0.846 

 

Table 2 shows the results of the arithmetic EM, as this quantity has been computed 

operationally, and the results from the NN nonlinear averaging using the scheme represented by 

equation 2. The errors are presented for the validation set, independent from the training set. 

Table 2 and Figure 9 (first line) indicate that one or few neurons are not sufficient. All error 

metrics are worse than the simple arithmetic EM. By increasing the number of neurons, results 

begin to improve. However, the model deteriorates as shown by Table 2 as the number of 

neurons is increased to 20. It was found after experimentation that the best results for this NN 

configuration are given with 11 neurons, at which point all error metrics of Table 2 are improved 
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compared to the arithmetic EM. The bias of 1 cm, RMSE of 42 cm, percentage error of 31%, and 

correlation of 0.76 are slightly better than the arithmetic EM. Figure 9 panels A, B and C point to 

a larger disagreement between measurements and simulation, especially in the validation set; 

whereas, in Figure 9 panels E, F, and G the cyan dots (NN-validation set) are more confined to 

the principal diagonal (dashed black, representing the perfect agreement) and contained within 

the cloud of black points (arithmetic EM). The better results of the training set (blue dots) 

relative to the validation set (cyan dots) in Figure 9 panels A, B and C, indicate another problem 

of using one neuron, associated with the low robustness – a fundamental challenge for NN model 

generalization. 

Additional tests applied the MLP-NN with 11 neurons tested the importance of each 

input/output variable to the training process, keeping Hs as the main variable. By removing the 

wind information (U10) the results degrade, which reflects the relatively high correlation of Hs 

with U10, equal to 0.71. When the information of Tp is removed, the results are relatively 

unchanged, with a difference of only 0.2% in the RMSE. This reflects the low correlation 

between Hs and Tp for the buoy´s position, equal to 0.07. This is relevant for the next steps of 

the project, when satellite data, which does not provide Tp, will be included. Considering the 

single point analyses described above, the NN model with architecture using 11 neurons, Hs/U10 

or Hs/Tp/U10 as input, normalization applying log function to Hs values, and using sequential 

training, has been found the most accurate configuration. This model was applied to the Pacific 

Ocean, where the NN weights and biases were re-trained using buoy 46047, and validated 

against buoy 46028. Results are presented in the last two lines of Table 2, showing the 

improvement of all error metrics apart from the correlation coefficient. Decreased values of bias, 

RMSE, and SI, combined with increased correlation coefficients indicate improved results. 

In Table 2, we see that the MLP-NN model reduces the bias and results in a small 

improvement of 5% to 12% of RMSE for the NN model compared to the arithmetic EM, though 

there is deterioration of the correlation coefficient at buoy 46028. Figure 9C shows that the NN 

model is sensitive to sampling errors. The NN benefits the ensemble averaging only in the 

interval between 0 to 2 meters of wave heights, which was expected since it is an interval with a 

large number of observations (see Figure 4 and Figure 6). Extreme events, by nature, are rare, 

and provide a minor contribution during the NN training. The result is a major deterioration of 

the error metrics for wave heights above 3 meters, as shown by Figure 9C. We expect 
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improvements when moving to a spatial analysis in regions with a high density of buoys and 

with the inclusion of satellite data, as these new data will increase the amount of observations 

associated with extreme events.  

 

 

 
Figure 9 – Comparison of MLP-NN models in the Atlantic Ocean using 1 neuron (first line) and 11 neurons (second 

line) at the intermediate layer. The first three columns are scatter plots of Hs (meters), Tp (seconds) and U10 (m/s). 

The last column (D and H) are the curves of scatter indexes as function of quantiles. The black curves are the current 

arithmetic ensemble mean (EM), considered the control, that is intended to be improved by the NN models. In blue 

(dots and curves): NN-training set. In green: NN-test set. In cyan (dots and curves): NN-validation set. Solid lines 

indicate buoy 41004 (training and test sets) and dashed lines buoy 41013 (independent validation set). The target 

outcome in plots D and H is to have small values of SI of curves green and cyan, located bellow the black lines 

related to the arithmetic ensemble mean. This happens in plot H in the range between 0 to 2 meters. Above 2 meters, 

in this experiment, the NN performs worse than the arithmetic EM. 
 

Additional methodologies were tested to improve the results and to ensure that, even 

when NN model does not improve the skill of the GWES, it at least preserves the skill of the 

simple arithmetic EM (equation 1). Two new approaches are applied, one using a set of NN 

ensembles, following the methodology of Krasnopolsky and Lin (2012), and another using the 

residue signal (equation 3; the NN is trained to predict the difference of GWES arithmetic mean 

from the measurements) as explained before. 

  

A B C D 

E F G H 
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3.3. Residue Signal 

The purpose of the NN applied to the residue is to use the arithmetic EM (equation 1) of 

the GWES to maintain the linear processes that are sufficiently represented by a simple 

arithmetic mean of the ensemble members, while using the NN to simulate the deviations from 

this average due to nonlinear processes as observed via the measurements (Figure 1). Thus, the 

NN model is trained to predict the signal of the error of the current GWES ensemble mean. It is 

based on the assumption that GWES mean has a reasonably good skill and that the information 

of the error (residue) is partially contained in the ensemble members through a nonlinear 

relationship; i.e., the ensemble members are used to predict the error of their own arithmetic EM. 

Equation 3 represents the current approach. 

A problem initially found is that the difference of measurements minus GWES mean is 

very noisy, with several peaks in the time series. This is a major difficulty for the optimization 

procedure used by the NN. A spectral analysis applied to the time series of Hs as well as the time 

series of the residue pointed to a small variance for periods below 12 hours, with the most 

important part of the signal associated with peaks around 24 to 48 hours, and other important 

peaks from 4 to 8 days. Therefore, a moving average filter of 24 hours was applied to the signal 

of the residue of Hs and U10 before the NN training process. 

The same method and NN architecture was applied as in the previous experiments, and 

the results are presented in Table 3 and Figure 10. From Table 3 the bulk statistics do not show 

significant improvement compared to the last approach, based on equation 2 and using the NN to 

calculate directly the ensemble mean. The only error metric improved was the correlation 

coefficient.  However, Figure 10 presents the error in function of the sea severity and shows the 

real benefits of using the NN applied to residue. The black line of Figure 10A presents the 

filtered signal of the error of the GWES mean compared to buoy 41013 in the Atlantic Ocean, 

which is the new target variable to predict. The cyan line of Figure 10A is the ¨prediction of the 

error¨ provided by the NN model, which is later added to the GWES arithmetic mean to provide 

the final forecast of Hs and U10. Figure 10B and C show a great reduction of the error with 

increasing quantiles, while cyan and blue lines (NN results) are below the black lines (GWES 

mean), indicating smaller scatter indexes and better result of NN compared to the arithmetic 

ensemble mean. 
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 Comparing Figure 10B with Figure 9H we see better performance at the higher ranges of 

Hs, which are associated with severe sea states. When the NN is trained to predict the residue, it 

is weighted towards correcting cases in which the error is high, usually related to stormy 

conditions. When the GWES arithmetic mean is accurate, the residue is near zero and the 

influence on the NN training is small. Thus, the NN-residue has improved upon the poorly 

sampled cases from the NN experiments previously described. 

 

 
Figure 10 – Results of the NN simulation at the two Atlantic Ocean buoys. A: time series of filtered residue of Hs 

(meters) in black (buoy measurement minus the GWES arithmetic EM) and the predicted residue in cyan, for the 

independent validation set at buoy 41013. B and C: curves of scatter indexes in function of quantiles; in black: 

arithmetic mean of ensembles, in blue: NN-training set (buoy 41004), in cyan: NN-validation set (buoy 41013) - 

solid lines indicate buoy 41004 (training and test sets), and dashed lines buoy 41013 (independent validation set). 

The goal of plots B and C is to have small SI values of curves cyan and blue, located bellow the black curves. 

 

Table 3 – Results of Hs (meters) assessment for the MLP-NN in the Atlantic Ocean at buoy 41013 (validation set), 
using the residues approach. First line is the control simulation with the current arithmetic mean of the members. 
The second line is the NN applied in the last item, using equation 2. The third line is the results with NN-Residue 
based on equation 3. 

Set bias RMSE SI CC 

EM GWES 0.026 0.445 0.334 0.759 

NN (equation 2) -0.011 0.420 0.315 0.765 

NN-Residue (equation 3) 0.126 0.440 0.330 0.771 

 

3.2. NN Ensembles 

Table 4 shows the assessment for buoy 41004 considering four different results. As a 

baseline, we present the individual GWES ensemble member that produced the best error metrics 

compared to all other ensemble members. The ¨best member¨ in this case was found to be the 

deterministic control member, which passes through a bias correction algorithm. A linear 

A 

B C 
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regression model was fitted to the same inputs of the NN model as a control experiment in order 

to compare the methodologies. Results from the linear regression are better than the arithmetic 

EM but still worse than the NN simulations, indicating the presence of nonlinearities in the 

signal and supporting the use of the NN approach. Finally, the NN ensemble that considers the 

five best individual NN models provides the best results, significantly improving upon than the 

arithmetic EM of the GWES (second line). For the 5-day forecast, there is a 64% reduction in 

bias, 29% reduction in RMSE and SI, and an 11% increase in the CC. Figure 11 further indicates 

that the NN ensemble (red dots) is in closer agreement with the diagonal of perfect agreement. 
 

Table 4 – Comparison of different simulations against buoy 41004, for Hs (meters). The ¨Best Member GWES¨ is 

provided as a baseline. The EM is the arithmetic ensemble mean of the GWES members, without any correction. A 

linear regression statistical model is tested and presented. The last line shows the results for a 5-member NN 

ensemble model. 

41004 bias RMSE SI CC 

Best Member GWES -0.101 0.526 0.427 0.724 

EM GWES -0.115 0.457 0.371 0.755 

Linear Regression model 0.094 0.433 0.352 0.739 

NN-ensemble (5 members) 0.041 0.373 0.303 0.807 

 

 

 
Figure 11 – Scatter plot of simulation results against buoy 41004 measurements, for Hs (meters). In green: Linear 

regression model. In blue: arithmetic mean of GWES members. In red: NN ensemble. 
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4. Final Discussion  

This technical note presents developments and progress for the first 8 months of the NOAA Next 

Generation Global Prediction System (NGGPS) project ¨Improving Global Wind-Wave 

Probabilistic Forecasts and Products Beyond Week 2¨, (NA16NWS4680011), as follows:  

1. We conducted initial data mining and organizing of all buoy and satellite data for the period 

from 03/2015 to 02/2017. The final database consists of reliable and QC’ed observations of 

Hs, Tp and U10.  

2. We have implemented a strategy for the initial tests with MLP-NN models, considering two 

buoys in the Atlantic and two in the Pacific Ocean, where GWES was also evaluated. Results 

show an increase of GWES errors and ensemble spread with forecast time, as expected, while 

the control member produces better results than the ensemble members. This behavior has 

been discussed with scientist of EMC/NCEP but must be further investigated. The 

assessment results indicate that errors associated with stormy events tend to be higher than 

the usual increase of error with forecast time, which led to a different strategy for the NN 

training, instead using the residue of the variables versus the arithmetic EM.  

3. The theory and architecture of the NNs were investigated. The best NN model found has 

used two layers with 11 neurons at the intermediate layer, a hyperbolic tangent basis 

function, optimization using sequential training, and normalization using equation (5), and 

applying the log function to the Hs time series. This solution proved to be successful in both 

the Atlantic and Pacific basins, off the east and west coasts of the USA. Moreover, it was 

found that the information of wave period (Tp) does not improve nor deteriorate results; 

therefore, future analyses will consider only Hs and U10 for NN output variables.  

4. Three different types of MLP-NN models were developed and evaluated: 

• The first was nonlinear ensemble averaging (equation 2), which reduced by 5% to 

12% the RMSE of the fifth day forecast of Hs but has the improvement confined to 

waves only from 0 to 2.5 meters, as a consequence of small amount of data at  larger 

wave heights.  

• The second approach considered the NN trained to predict the difference of 

observations minus ensemble mean (equation 3 and Figure 1). The benefit of this 
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model was to reduce the impacts of sampling error at high wave heights, so that the 

statistical model improves the skill in all wind-speed and wave-height ranges, from 

calm to extreme events, even when the amount of data at a certain interval is small. 

Figure 10B shows that for all ranges of Hs the NN improved the skill of the model, 

with a benefit of 10% to 15% for most values. Additionally, the NN model improved 

the results for U10 as indicated by Figure 10C. Since bulk statistics were not 

generally deteriorated relative to other NN approaches, and a significant improvement 

was achieved for larger waves, this is a promising strategy that will be evaluated 

further in future work. 

• The third approach, which produced the best results in terms of bulk statistics, 

considered an ensemble of the best five individual NN models. When compared to the 

GWES ensemble mean of Hs, the NN-ensemble reduced in the bias by 64%, RMSE 

and SI by 29%, and increased the CC by 11%. More than 40 random initializations of 

the NN model were tested, with different random number seeds, leading to 

differences in performance and convergence of the statistical model. The selection of 

the best NN models and their averaging represents an important step, as discussed by 

Krasnopolsky and Lin (2012) regarding the benefits of using ensembles of NN 

models. Therefore, the ensemble of NNs outperforms the GWES for all variables 

analyzed (Hs, Tp, and U10). A Linear Regression model was also tested, giving a 

small improvement to Hs but not to Tp or U10. 

 

5. Conclusions and Next Steps  

MLP-NN models with optimized architecture applied to single points with reliable buoy 

measurements have been validated in both the Atlantic and Pacific Oceans, using two years of 

NDBC data. Codes were developed in FORTRAN and python languages, giving very similar 

results, and providing the option to take advantage of sophisticated NN libraries available in 

python. For example, the same python code has been recently modified to use the scikit-learn 

module (python), with very similar results again but running much faster. It provides the support 

and confidence to move on to the next step of the research, when a large geographic area will be 

defined and the NN trained using buoy and satellite data; once again selecting two basins in the 
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Atlantic and Pacific Oceans. The methodology of the MLP-NN models addressed in this report is 

simple, and the software developed is also simple and straightforward, which should help to 

facilitate operational implementation. The output of optimal NN training consists of two matrices 

of weights and two vectors of biases (equation 4) and the NN can easily be re-trained when 

necessary, given any future modifications of the GEFS or GWES. Thus, we anticipate the results 

and software will maintain their relevance as NCEP transitions to the Unified Global Coupled 

System (UGCS) for many of its prediction products at multiple timescales.  
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